Algorithms for Efficient Vectorization of Repeated Sparse Power System Network Computations

نویسندگان

  • Cevdet Aykanat
  • Nezih Güven
چکیده

Standard sparsity-based algorithms used in power system applications need to be restructured for efficient vectorization due to the extremely short vectors processed. Further, intrinsic architectural features of vector computers such as chaining and sectioning should also be exploited for utmost performance. This paper presents novel data storage schemes and vectorization algorithms that resolve the recurrence problem, exploit chaining and minimize the number of indirect element selections in the repeated solution of sparse linear system of equations widely encountered in various power system problems. The proposed schemes are also applied and experimented for the vectorization of power mismatch calculations arising in the solution phase of FDLF which involves typical repeated sparse power network computations. The relative performances of the proposed and existing vectorization schemes are evaluated, both theoretically and experimentally on IBM 3090/VF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding the Optimal Path to Restoration Loads of Power Distribution Network by Hybrid GA-BCO Algorithms Under Fault and Fuzzy Objective Functions with Load Variations

In this paper proposes a fuzzy multi-objective hybrid Genetic and Bee colony optimization algorithm(GA-BCO) to find the optimal restoration of loads of power distribution network under fault.Restoration of distribution systems is a complex combinatorial optimization problem that should beefficiently restored in reasonable time. To improve the efficiency of restoration and facilitate theactivity...

متن کامل

Regularizing graph centrality computations

Centrality metrics such as betweenness and closeness have been used to identify important nodes in a network. However, it takes days to months on a high-end workstation to compute the centrality of today’s networks. The main reasons are the size and the irregular structure of these networks. While today’s computing units excel at processing dense and regular data, their performance is questiona...

متن کامل

An Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems

‎By p-power (or partial p-power) transformation‎, ‎the Lagrangian function in nonconvex optimization problem becomes locally convex‎. ‎In this paper‎, ‎we present a neural network based on an NCP function for solving the nonconvex optimization problem‎. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...

متن کامل

Improve Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network

The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in  power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...

متن کامل

Mathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks

In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995